

8* CONVEGNO MIA MANIPULATIONS ITALIAN ACADEMY 21 E 22 OTTOBRE 2023 OLY HOTEL - ROMA VIA SANTUARIO REGINA DEGLI APOSTOLI 36

richiesto patrocinio di: OMCeO Roma e OFI LAZIO

THE PROSTHETIC SHOULDER: ANATOMICAL VERSUS REVERSE

Dott.ssa Elena Silvestri Dr. Filippo Parisi Dr. Giovanni Di Giacomo

HOW TO APPROACH TO A TSA?

DIAGNOSTIC FRAMEWORK

SHOULDER ACADEMY

JOINT ASSESSMENT & PATIENT SELECTION

Normal glenoid vault anatomy and validation of a novel glenoid implant shape

Michael J. Codsi, MD, e.f Craig Bennetts, MS, a,c Katherine Gordiev, MD, b Daniel M. Boeck, h Young Kwon, MD, PhD, 9 John Brems, MD, b Kimerly Powell, PhD, a,b,c,d and Joseph P. lannotti, MD, PhD, a,b,c,d Cleveland, OH, and New York, NY

Location of the Optimized Centerline of the Glenoid Vault: A Comparison of Two Operative Techniques with Use of Three-Dimensional Computer Modeling

By Gregory S. Lewis, PhD, Chris D. Bryce, MD, Andrew C. Davison, MS, Christopher S. Hollenbeak, PhD, Stephen J. Piazza, PhD, and April D. Armstrong, BSc(PT), MD, MSc, FRCSC

Glenoid deformity in the coronal plane correlates with humeral head changes in osteoarthritis: a radiographic analysis

Nael Hawi, MD^{a,b,*}, Petra Magosch, MD^{c,d}, Mark Tauber, MD^{a,e}, Sven Lichtenberg, MD^c, Frank Martetschläger, MD^a, Peter Habermeyer, MD^a

Glenoid version: How to measure it? Validity of different methods in two-dimensional computed tomography scans

Dominique M. Rouleau, MD, MSc, FRCSC^{a,*}, Jacob F. Kidder, MD^b, Juan Pons-Villanueva, MD^c, Savvas Dynamidis, MD^d, Michael Defranco, MD^e, Gilles Walch, MD^f

Static posterior humeral head subluxation and total shoulder arthroplasty

Christian Gerber, MD*, John G. Costouros, MD, Atul Sukthankar, MD, Sandro F. Fucentese, MD

Imaging Diagnostic Framework (XR – MRI – TC)

Subcondral Bone Preserved

Glenoid Iclination < 10°

Glenoid Retroversion < 10°

HH Subluxation <80%

WHO IS MY PATIENT?

Long-term prevalence and impact of glenohumeral osteoarthritis after Latarjet-Patte procedure for anterior instability

Walch BO glenoid: pre-osteoarthritic posterior subluxation of the humeral head

Clément Lalanne¹, Thomas Vervoort², Xavier Cassagnaud³, Christophe Szymanski¹, Caroline Bourgault¹, Cecile Pougès¹, Carlos Maynou¹

Peter Domos, MD, FRCS^a,*, Caio Santos Checchia, MD^b, Gilles Walch, MD^c

AI DISFUNCTIONAL PATTERNS

Comparative electromyographic analysis of shoulder muscles during planar motions: Anterior glenohumeral instability versus normal

Patrick J. McMahon, MD, Frank W. Jobe, MD, Marilyn M. Pink, PhD, PT, John R. Brault, MS, PT, and Jacquelin Perry, MD, Inglewood, Calif.

Scapular inclination and inferior stability of the shoulder

Eiji Itoi, MD, Neil E. Motzkin, MD, Bernard F. Morrey, MD, and Kai-Nan An, PhD, Rochester, Minn.

Original Article

Muscle activation patterns in patients with recurrent shoulder instability

Anju Jaggi, Ali Noorani, Alex Malone, Joseph Cowan, Simon Lambert, Ian Bayley

PI DIFUNCTIONAL PATTERNS

Original Article

Muscle activation patterns in patients with recurrent shoulder instability

Anju Jaggi, Ali Noorani, Alex Malone, Joseph Cowan, Simon Lambert, Ian Bayley

Use of shoulder pacemaker for treatment of functional shoulder instability

Proof of concept

Latississimus dorsi 81%

Infraspinatus

Romboids and Middle Trap

CULTURAL OVELAP: WHAT TO KNOW

PATHOLOGY

SURGICAL PROCEDURE

BIOMECHANICAL IMPLICATIONS

SURGICAL PROCEDURE'S GOALS

- → Restore the bone deformity
- → Restore the soft tissue right tension

Review Article

Benjamin W. Sears, MD
Peter S. Johnston, MD
Matthew L. Ramsey, MD
Gerald R. Williams, MD

Glenoid Bone Loss in Primary Total Shoulder Arthroplasty: Evaluation and Management

RESTORE THE BONE DEFORMITY

A modification to the Walch classification of the glenoid in primary glenohumeral osteoarthritis using three-dimensional imaging

RESTORE SOFT TISSUE RIGHT TENSION

Giovanni Merolla a,*, Francesco Di Piettob, Stefania Romanob, Paolo Paladinia, Fabrizio Campia, Giuseppe Porcellinia

^b Department of Diagnostic Imaging, "A. Cardarelli" Hospital, Naples, Italy

The main cause of instability after unconstrained shoulder prosthesis is soft tissue deficiency

Jean Kany, MD^{a,*}, Jijo Jose, DNB^b, Denis Katz, MD^c, Jean David Werthel, MD^d, Padmanaban Sekaran, MSc PTe, Rajkumar S. Amaravathi, DNBf, Philippe Valenti, MDd

HOW TO APPROACH TO A TSA?

DIAGNOSTIC FRAMEWORK ROTATOR CUFF EFFICENCY

SUBSCAP REPAIR!

PLAN A REHAB APPROACH

Chronic irreparable subscapularis deficiency is a contraindication to ATSA as it tends to destabilize the joint secondary to an upward migration of the humeral head and eccentric contact pressure onto the glenoid. While subscapularis preserving approaches have been described, most surgeons access the glenohumeral joint by subscapularis detachment with either a tenotomy, peel, or lesser tuberosity osteotomy. Effective subscapularis repair during surgery therefore mandatory.

Patrick Goetti¹ Patrick I. Denard² Philippe Collin³ Mohamed Ibrahim⁴ Adrien Mazzolari5 Alexandre Lädermann^{5–7}

Biomechanics of anatomic and reverse shoulder arthroplasty

The ability to restore functional internal rotation after

shoulder arthroplasty is an important goal of surgery

Restoration of functional internal rotation after primary

shoulder arthroplasty is necessary to perform several important ADLs. Perianal hygiene, dressing, and bathing

are several ADLs that necessitate adequate functional recovery of internal rotation.

Understanding of the normal shoulder range of motion is imperative to determine

restoration of internal rotation after anatomic and

reverse

shoulder arthroplasty: a comparison of anatomic and reverse shoulder arthroplasty

OURNAL OF SHOULDER AND ELBOW Surgery

PLAN A REHAB APPROACH

Restoring ROM and strength following TSA is considered important for patients to obtain a good outcome post-surgery and, when applied early, may offer more rapid recovery. Despite this, there is a paucity of research evidence to inform clinical practice. Given the rising incidence of TSAs, especially reverse TSA, this review demonstrates the urgent need for high-quality, adequately powered RCTs to determine the effectiveness of rehabilitation program following these surgeries.

Effectiveness of formal physical therapy following total shoulder arthroplasty:
A systematic review

TABLE II Grades of Recommendation for Rehabilitation After Shoulder Arthroplasty

	Grade*	
Intervention	ATSA	RTSA
Sling utilization		
Use of sling	В	В
Type of sling	1	1
Duration of sling wear	1	C
Motion		
Early-motion protocol	В	1
Delayed-motion protocol	В	1
Motion restrictions	1	1
Formal postoperative therapy/strengthening	1	1
Home-based postoperative therapy/strengthening	С	1

^{*}ATSA = anatomic total shoulder arthroplasty, and RTSA = reverse total shoulder arthroplasty. Grade A: good evidence (Level-I studies with consistent findings) for or against recommending intervention. Grade B: fair evidence (Level-II or III studies with consistent findings) for or against recommending intervention. Grade C: conflicting or poor-quality evidence (Level-IV or V studies) not allowing a recommendation for or against intervention. Grade I: there is insufficient evidence to make a recommendation.

REHABILITATION AFTER ANATOMIC AND REVERSE TOTAL SHOULDER ARTHROPLASTY

PROVIDE AN ASSESSMENT & COLLECTING DATA

OUTOME RATES

APPROACH TO A RTSA IN 3 MOVES

APPROACH TO A RTSA IN 3 MOVES

PRIMARY OA?

PHF?

OTHER SURGERY?

PATIENT HISTORY

(HAMADA I-II-II)

CUFF ARTHROPATY

(HAMADA IV AND V)

OSTEOARTHROSIS

CUFF REPAIR FALIURE

MINIMUM 5-YEARS FOLLOW-UP

INSTABILITY

TSA FALIURE

ACUTE PHF

FRACTURE SEQUELAE

APPROACH TO A RTSA IN 3 MOVES

DIAGNOSTIC FRAMEWORK

ROTATOR CUFF?

WHAT ABOUT THE CUFF?

Relationship between massive chronic rotator cuff tear pattern and loss of active shoulder range of motion

Philippe Collin, MD^a, Noboru Matsumura, MD^b, Alexandre Lädermann, MD^{c,d,e},

Patrick J. Denard, MDf, Gilles Walch, MDg

SHOULDER AND ELBOW SURGERY www.elsevier.com/locate/ymse

JOURNAL OF

Age-related prevalence of rotator cuff tears in asymptomatic shoulders

HOW TO APPROACH TO A RTSA?

DIAGNOSTIC FRAMEWORK

ROTATOR CUFF?

KNOW THE SURGERY

KNOW THE SURGERY

Lateralization/Medialization

Distalizzation

Inferior Tilt

Avoid Scapular Notching

Deltoid Wrapping

Mantain the rotations

SUBSCAPOLARIS REPAIR?

SUBSCAPOLARIS REPAIR

Table I Functional	Score data		
Outcome	Subscapularis repair (group 1)	Subscapularis tenotomy (group 2)	P value
SPADI score	23.4	23.2	>.999
ASES score	77.7	79.3	.709
UCLA shoulder score	28.3	28.8	.617
SST-12 score	9.2	9.1	.994
Normalized Constant score	72.6	72.7	.969

ASES, American Shoulder and Elbow Surgeons; SPADI, Shoulder Pain and Disability Index; SST-12, 12-Item Simple Shoulder Test; UCLA, University of California, Los Angeles.

Primary reverse total shoulder arthroplasty outcomes in patients with subscapularis repair versus tenotomy

Range-of-motion and strength data Table II Subscapularis Subscapularis Outcome score repair tenotomy value (group 1) (group 2) Active external rotation 26° .372 24° Passive external rotation 49° .119 Active forward elevation 120° 122° .606Active internal rotation .967Active abduction 109° .461External rotation 9.9 lb 9.9 lb .463strength

Subscapularis Repair Is Unnecessary After Lateralized Reverse Shoulder Arthroplasty

Troy A. Roberson, MD, Ellen Shanley, PT, PhD, OCS, James T. Griscom, BS, Michael Granade, PharmD, Quinn Hunt, BS, Kyle J. Adams, BS, Amit M. Momaya, MD, Adam Kwapisz, MD, Michael J. Kissenberth, MD, Keith T. Lonergan, MD, Stefan J. Tolan, MD, Richard J. Hawkins, MD, and John M. Tokish, MD

INCREASE THE WRAPPING EFFECT!

Effect of humeral stem design on humeral position and range of motion in reverse shoulder arthroplasty

Impact of Inferior Glenoid Tilt, Humeral Retroversion, Bone Grafting, and Design Parameters on Muscle Length and Deltoid Wrapping in Reverse Shoulder Arthroplasty

KNOW THE SURGERY

BIOMECHANICAL IMPLICATIONS

AVOID COMPLICATIONS

Classification of acromial fractures. Courtesy of Levy et al. 11

Acromial spine fracture after reverse total shoulder arthroplasty: a systematic review

Diana C. Patterson, MD*, Debbie Chi, BS, Bradford O. Parsons, MD, Paul J. Cagle Jr, MD

Conclusion

This study suggests the occurrence of acromial fractures after RSA is a common event, with a rate of over 4% in 3838 patients. These fractures correlate with worse post-operative outcomes regardless of the method of treatment. On the basis of this comparison, ORIF was not shown to be clinically superior despite a limited complication rate. Nonoperative management showed a higher rate of nonunion.

Between 4 and 10%

KNOW THE SURGERY

BIOMECHANICAL IMPLICATIONS

AVOID COMPLICATIONS

STEPHANIE BOUDREAU, PT, DPT¹ • ED BOUDREAU, PT, OCS²
LAURENCE D. HIGGINS, MD³ • REG B. WILCOX III, PT, DPT, MS, OCS⁴

Rehabilitation Following Reverse Total Shoulder Arthroplasty

Scapulohumeral rhythm in shoulders with reverse shoulder arthroplasty

David Walker, PhD^a, Keisuke Matsuki, MD, PhD^b, Aimee M. Struk, MEd, ATC^c, Thomas W. Wright, MD^c,*, Scott A. Banks, PhD^a

Biomechanics of reverse total shoulder arthroplasty

Jonathan L. Berliner, MD*, Ashton Regalado-Magdos, BS, C. Benjamin Ma, MD, Brian T. Feeley, MD

How does scapula motion change after reverse total shoulder arthroplasty? - a preliminary report

Myung-Sun Kim¹, Keun-Young Lim², Dong-Hyun Lee¹, David Kovacevic³ and Nam-Young Cho^{1*}

MANAGE A REVERSE IN 3 MOVES

BIOMECHANICAL IMPLICATIONS

AVOID COMPLICATIONS

Scapulohumeral rhythm in shoulders with reverse shoulder arthroplasty

David Walker, PhD^a, Keisuke Matsuki, MD, PhD^b, Aimee Struk, MS^c, Thomas W. Wright, MD^c,*, Scott A. Banks, PhD^a

Activities of daily living with reverse prostheses: importance of scapular compensation for functional mobility of the shoulder

Alexandre Terrier, PhD^a,*, Patricia Scheuber, MSc^a, Dominique P. Pioletti, PhD^a, Alain Farron, MD^b

MANAGEMENT OF COMPLICATIONS

Table 1. Various risk factors having an effect on instability after reverse shoulder arthroplasty (RSA)

Author	Risk factor
	Comorbidities and demographic factors
Cheung et al ⁸²	Male gender
Padegimas et al ¹⁰⁴	Body mass index > 30
	Diagnosis
Cheung et al ⁸²	Previous open procedures, preoperative nonunion of proximal humerus or tuberosity
	Intraoperative factors
Tashjian et al83	Superior inclination of baseplate
Ohl et al ¹⁰⁵	Resection of tuberosities
Lädermann et al ¹⁰⁶	Deltoid insufficiency, intraoperative neurological palsy
Cheung et al and Edwards et al ^{82,107}	Lack of anterior restraints including subscapularis insufficiency (controversial, depend on prosthetic design)
Lädermann et al and Gallo et al ^{81,108}	Inability to restore humeral length
Edwards et al ¹⁰⁷	Conjoint tendon weakness and pectoralis major insufficiency
Favre et al ⁶²	Malpositioning of the components
Johnson et al ¹⁰⁹	Impingement
	Postoperative factors
Gallo et al ¹⁰⁸	Infection
Lädermann et al ¹⁰⁶	Deltoid insufficiency resulting from acromial fracture, polyethylene wear, stem subsidence

Between 2,4 and 31%

In the first 4 weeks

Marko Nabergoj^{1,2} Patrick J. Denard³ Philippe Collin⁴ Rihard Trebše^{1,2} Alexandre Lädermann^{5–7} Mechanical complications and fractures after reverse shoulder arthroplasty related to different design types and their rates: part I

Shoulder & Elbow

Emilie Cheung, MD Matthew Willis, MD Matthew Walker, MD Rachel Clark Mark A. Frankle, MD **Review Article**

Complications in Reverse Total Shoulder Arthroplasty Journal AAOS

